周苏洋

时间:2023-03-06浏览:4599

周苏洋

职称:  副教授、博士生导师

研究方向: 综合能源系统、人工智能、需求侧管理等

Email: suyang.zhou@seu.edu.cn



个人简介:

周苏洋,副教授,博士生导师。本科毕业于华中科技大学电气工程及自动化专业,博士毕业于英国伯明翰大学电力系统专业。曾先后任职于英国莱斯特大学、英国Cellcare Technologies Ltd以及英国电网示范中心,分别担任助理研究员(KTP Associate)、研发工程师(R&D Engineer)及数据科学家(Data Scientist)。目前就职于东南大学电气工程学院,从事综合能源系统及人工智能驱动的能源系统运行调度方向研究,与英国伯明翰大学、英国思克莱德大学、香港陈清泉院士团队建立有良好的合作关系。

主持国家自然科学基金面上项目、青年项目各1项。作为技术骨干参与国家重点研发计划、国家自然科学基金重点基金(智能电网联合基金)等项目。主持/参与多个国家电网公司、南方电网公司、中国能源建设集团科技项目。发表SCIEI及核心论文近百篇。获得中国电工技术学会科学技术奖二等奖(排1)、中国发明协会创新奖二等奖(排1)、江苏省科技进步奖三等奖(排1、中国电力创新奖一等奖、日内瓦发明专利金奖等多个国内外奖项。以指导教师身份获得江苏省本科优秀毕业设计论文一等奖1项(排1)、三等奖1项(排1)及团队奖1项(排2)。

其主持开发的综合能源系统系列化软件平台IES-Plan(综合能源系统规划平台)、IES-Sim(综合能源系统仿真平台)、IES-Con(综合能源系统运行调度平台)已被电力公司、设计院、工程公司等数十家企事业单位及高等院校使用并被央视新闻频道、凤凰网、江苏网、英国NETWORK等多家国内外媒体报道。目前,正在主持开发图计算驱动的新一代电网数据分析及调度/指挥系统。欢迎对综合能源系统、人工智能(图计算方向/大模型方向)领域感兴趣的同学加入团队



论著:

1) 著作&章节

[1] Zhou, S., Qiu, Y., Zhuang, W., & Chen, J. (2024). Large-scale hydrogen storage using underground hydrogen storage, metal hydride storage, and other emerging technologies. In Hydrogen Energy Conversion and Management (pp. 315-391). Elsevier. (Chapter 11)

2)英文期刊论文

[J70] Zhou, S., Zheng, S., Gu, W., Wu, Z., Zhang, Z., & Lv, Hong. (2024). Consuming the redundant renewable energy by injecting hydrogen into the gas network: A case study of electricity-gas-hydrogen coupled system of Ireland. International Journal of Hydrogen Energy.

[J69]Zhou, S., Mou, R., Gu, W., Wu, Z., Guan, A., & Pei, R. (2024). Medium-term interval optimal scheduling of terraced hydropower plants considering carbon trading scenarios.Electric Power Systems Research, 234, 110586.

[J68] Guan, A., Zhou, S*., Gu, W., Chen, J., Lv, H., Fang, Y., & Xv, J. (2024). Enhancing stability of electric-steam integrated energy systems by integrating steam accumulator.Applied Energy, 364, 123049.

[J67] Zhou, S., Du, S., Gu, W., Pei, R., Wu, X., & Wang, Z. (2024). Hierarchical optimal dispatching method of transmission system operators‐distribution system operators cooperated integrated energy system considering gas‐thermal equivalence model.IET Renewable Power Generation.

[J66] Guan, A., Zhou, S*., Gu, W., Lu, S., Zhang, S., & Gu, D. (2024). Cross-System Fault Propagation Mechanism in Heat-Electrical Integrated Energy Systems: Insights From Pipe Leakage. IEEE Transactions on Power Systems

[J65] Zhuang, W., Zhou, S*., Gu, W., Ding, S., Wu, Z., Zhang, T., Ding, Y., Chan, C.C. and Zhang, S. (2024) “Optimal planning of electricity-gas coupled coordination hub considering large-scale energy storage,” Energy Conversion and Management, 300, p. 117917.

[J64] Zhuang, W., Zhou, S*., Chen, J. and Gu, W. (2024) “Operation optimization of electricity-steam coupled industrial energy system considering steam accumulator,” Energy, 289, p. 129903.

[J63] Gu, Z., Pan, G., Gu, W., Zhou, S., Wu, Z. and Lu, S. (2023) “Assessment and prospect of region joint electrolytic hydrogen systems considering multiple energy sources: wind, solar, hydro and thermal power,” IEEE Transactions on Industry Applications, 59(5), pp. 5269–5282.

[J62] Guan, A., Zhou, S*., Gu, W., Zhang, K., Ding, L. and Lv, H. (2023) “An optimal step-size simulation framework for large-scale heat-electric integrated energy system considering fault states,” Electric Power Systems Research, 223, p. 109617.

[J61] Guo, Z. and Zhou, S*. (2023) “Modeling and Multi-Stage Planning of Cement-IIES considering Carbon-Green Certificate trading,” Processes, 11(4), p. 1219.

[J60] Qiu, Y., Zhou, S*., Dong, X., Gu, W., Sun, K., Han, G., Zhang, K. and Lv, H. (2023) “Local integrated energy system operational optimization considering multi‐type uncertainties: A reinforcement learning approach based on improved TD3 algorithm,”IET Renewable Power Generation, 17(9), pp. 2236–2256.

[J59] Yang, P., Wang, Z., Gu, W., Zhou, S. and Liu, P. (2023) “Optimal Micro-PMU placement for improving state estimation accuracy via mixed-integer semidefinite programming,” Journal of Modern Power Systems and Clean Energy, 11(2), pp. 468–478.

[J58] Li, Y., Zhou, S*. and Pan, G. (2023) “An effective optimisation method for coupled Wind–Hydrogen power generation systems considering scalability,” Processes, 11(2), p. 343.

[J57] Zhuang, W., Pan, G., Gu, W., Zhou, S., Hu, Q., Gu, Z., Wu, Z., Lu, S. and Qiu, H. (2023) “Hydrogen economy driven by offshore wind in regional comprehensive economic partnership members,”Energy & Environmental Science, 16(5), pp. 2014–2029.

[J56] Guan, A., Zhou, S*., Gu, W., Lu, S., Wu, Z. and Gao, M. (2023) “An experimental platform of heating network similarity model for test of integrated energy systems,”IEEE Transactions on Industrial Informatics, pp. 1–12.

[J55]Zhou, S., Chen, J., Gu, W., Fang, X. and Yuan, X. (2023) “An adaptive space-step simulation approach for steam heating network considering condensate loss,” Energy, 263, p. 125643.

[J54] Qiu, Y., Zhou, S*., Gu, W., Ding, S., Han, G., Zhang, K. and Lv, H. (2022) “Multi‐stage flexible planning of regional electricity‐HCNG‐integrated energy system considering gas pipeline retrofit and expansion,” IET Renewable Power Generation, 16(15), pp. 3339–3367.

[J53] Qiu, Y., Zhou, S*., Chen, J., Wu, Z. and Hong, Q. (2022) “Hydrogen-Enriched compressed natural Gas network simulation for consuming green hydrogen considering the hydrogen diffusion process,” Processes, 10(9), p. 1757.

[J52] Luo, L., He, P., Zhou, S., Lou, G., Fang, B. and Wang, P. (2022) “Optimal scheduling strategy of EVs considering the limitation of battery state switching times,” Energy Reports, 8, pp. 918–927.

[J51] Luo, L., Wang, J., Zhou, S., Lou, G. and Sun, J. (2022) “A broad learning-based state estimation method for power system,” Energy Reports, 8, pp. 1227–1235.

[J50] Chen, J., Zhou, S*., Qiu, Y. and Xu, B. (2022) “An anomaly detection method of time series data for Cyber-Physical Integrated Energy System based on Time-Frequency feature prediction,” Energies, 15(15), p. 5565.

[J49] Chen, J., Zhou, S*., Liu, Z., Liu, H. and Zhan, X. (2022) “A novel Steady-State simulation approach for a combined electric and steam system considering steam condensate loss,” Processes, 10(8), p. 1436.

[J48] Zhang, H., Zhou, S*., Gu, W., Liu, Z., Zhan, X. and Liu, H. (2022) “A collaborative planning methodology of energy stations and energy networks in integrated energy system,” IET Renewable Power Generation, 16(14), pp. 3023–3040.

[J47] Guan, A., Zhou, S*., Gu, W., Liu, Z., Zhan, X. and Liu, H. (2022) “A data‐driven time‐step determination approach for dynamic simulation of heat‐electric coupled system,” IET Renewable Power Generation, 16(13), pp. 2840–2858.

[J46] Guan, A., Zhou, S*., Gu, W., Liu, Z. and Liu, H. (2022) “A novel dynamic simulation approach for Gas-Heat-Electric coupled system,” Applied Energy, 315, p. 118999.

[J46] Pan, G., Gu, W., Gu, Z., Wang, J., Lü, S., Zhou, S. and Wang, Z. (2022) “Activating electrolytic hydrogen in Renewable-Based power systems for a hydrogen economy,”

[J45] Wu, Z., Zheng, X., Gu, W., Zhou, S. and Yang, X. (2022) “Decentralized Game-Based Robustly Planning Scheme for distribution network and microgrids considering bilateral energy trading,” IEEE Transactions on Sustainable Energy, 13(2), pp. 803–817.

[J44]Zhou, S., Zhuang, Y., Wu, Z., Gu, W., Yu, P., Du, J. and Luo, X. (2020) “Planning and real-time pricing of EV charging stations considering the social welfare and profitability balance,” CSEE Journal of Power and Energy Systems, 7(6), pp. 1289–1301.

[J43]Zhou, S., Chen, J., Wu, Z. and Qiu, Y. (2021) “Electrification of online Ride-Hailing vehicles in China: intention modelling and market prediction,” Energies, 14(21), p. 7380.

[J42] Qiu, Y., Zhou, S*., Gu, W., Pan, G., and Chen, X. (2022). “Application prospect analysis of hydrogen enriched compressed natural gas technologies under the target of carbon emission peak and carbon neutrality.” Proceedings of the CSEE, 42(4), pp.1301-1321.

[J41] Pan, G., Gu, W., Chen, S., Lu, Y., Zhou, S. and Wei, Z. (2021) “Investment equilibrium of an integrated multi–stakeholder electricity–gas–hydrogen system,” Renewable & Sustainable Energy Reviews, 150, p. 111407.

[J40] Zhang, S., Gu, W., Yao, S., Lu, S., Zhou, S., and Wu, Z. (2022). “Unified modeling of integrated energy networks in time domain and its applications (II): Augmented model in complex frequency domain and comparison between time/frequency domain models.” Proc. CSEE, 42(16), 5798-5810.

[J39]Zhou, S., Pei, R., Xie, J., Gu, W. and Chen, X. (2021) “Integrated energy system operation optimization with gas linepack and thermal inertia,”IET Renewable Power Generation, 15(15), pp. 3743–3760.

[J38] Pei, R., Xie, J., Zhang, H., Sun, K., Wu, Z. and Zhou, S. (2021) “Robust Multi-Layer energy management and control methodologies for Reefer Container park in port terminal,” Energies, 14(15), p. 4456.

[J37] Zhang, J., Li, Y., Wu, Z., Cui, R., Wang, T., Zhang, Z. and Zhou, S. (2021) “Deep-Reinforcement-Learning-Based Two-Timescale voltage control for distribution systems,” Energies, 14(12), p. 3540.

[J36] Yang, F., Yin, S., Zhou, S., Li, D., Fang, C. and Lin, S. (2021) “Electric vehicle charging current scenario generation based on generative adversarial network combined with clustering algorithm,”International Transactions on Electrical Energy Systems, 31(8).

[J35] Zhuang, W., Zhou, S*., Gu, W. and Chen, X. (2021) “Optimized dispatching of city-scale integrated energy system considering the flexibilities of city gas gate station and line packing,” Applied Energy, 290, p. 116689.

[J34] Cao, S., Zhang, H., Cao, K., Chen, M., Wu, Y. and Zhou, S. (2021) “Day-Ahead economic optimal dispatch of microgrid cluster considering shared energy storage system and P2P transaction,” Frontiers in Energy Research, 9, p. 645017.

[J33] Zhang, S., Gu, W., Yao, S., Lu, S., Zhou, S., and Wu, Z. (2021). “Unified modeling of integrated energy networks in time domain and its applications (I): two-port models in time domain.” Proceedings of the CSEE , 41(16),pp. 6509-6521).

[J32] Wu, C., Gu, W., Zhou, S. and Chen, X. (2021) “Coordinated optimal power flow for integrated active distribution network and virtual power plants using decentralized algorithm,” IEEE Transactions on Power Systems, 36(4), pp. 3541–3551.

[J31]Zhou, S., Hu, Z., Gu, W., Jiang, M., Chen, M., Hong, Q. and Booth, C. (2020) “Combined heat and power system intelligent economic dispatch: A deep reinforcement learning approach,” International Journal of Electrical Power & Energy Systems, 120, p. 106016.

[J30] Zhang, S., Gu, W., Yao, S., Zhou, S and Lu, S. (2021) “Partitional Decoupling Method for Fast Calculation of Energy Flow in a Large-Scale Heat and Electricity Integrated Energy System,” IEEE Transactions on Sustainable Energy, 12(1), pp. 501–513.

[J29] Lu, S., Gu, W., Zhou, S., Yu, W., Yao, S. and Pan, G. (2020) “High-Resolution modeling and decentralized dispatch of heat and electricity integrated energy system,” IEEE Transactions on Sustainable Energy, 11(3), pp. 1451–1463.

[J28] Lu, S., Gu, W., Yao, S. Zhou, S. and Pan, G. (2020) “Adaptive robust dispatch of integrated energy system considering uncertainties of electricity and outdoor temperature,” IEEE Transactions on Industrial Informatics, 16(7), pp. 4691–4702.

[J27] Qiu, Y., Zhou, S*., Wang, J., Chou, J., Fang, Y., Pan, G. and Gu, W. (2020) “Feasibility analysis of utilising underground hydrogen storage facilities in integrated energy system: Case studies in China,” Applied Energy, 269, p. 115140.

[J26] Pan, G., Gu, W., Qiu, H., Lu, Y. and Zhou, S. (2020) “Bi-level mixed-integer planning for electricity-hydrogen integrated energy system considering levelized cost of hydrogen,” Applied Energy, 270, p. 115176.

[J25] Yao, S., Gu, W., Lu, S., Pan, G. and Zhou, S. (2021) “Dynamic optimal energy flow in the heat and electricity integrated energy system,” IEEE Transactions on Sustainable Energy, 12(1), pp. 179–190.

[J24] Wu, Z., Zhuang, Y., Zhou, S., Xu, S., Yu, P., Du, J., Luo, X. and Abbas, G. (2020) “Bi-Level planning of Multi-Functional vehicle charging stations considering land use types,” Energies, 13(5), p. 1283.

[J23]Zhou, S., Sun, K., Wu, Z., Gu, W., Wu, G., Li, Z. and Li, J. (2020) “Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty,” Energy, 199, p. 117269.

[J22]Zhou, S., Sun, K., Wu, Z., Gu, W., Wu, G., Li, Z. and Li, J. (2020) “Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty,” Energy, 199, p. 117269.

[J21]Zhou, S., Zou, F., Gu, W., Hong, Q. and Booth, C. (2020) “A smart community energy management scheme considering user dominated demand side response and P2P trading,” International Journal of Electrical Power & Energy Systems, 114, p. 105378.

[J20]Zhou, S., Qiu, Y., Zou, F., He, D., Yu, P., Du, J., Luo, X., Chen, Y., Wu, Z. and Gu, W. (2020b) “Dynamic EV charging pricing methodology for facilitating renewable energy with consideration of highway traffic flow,” IEEE Access, 8, pp. 13161–13178.

[J19]Zhou, S., Zhuang, W., Wu, Z., Gu, W., Zhan, X., Liu, Z. and Cao, S. (2020) “Optimized scheduling of multi-region Gas and Power Complementary system considering tiered gas tariff,” Energy, 193, p. 116677.

[J18]Zhou, S., He, D., Zhang, Z., Wu, Z., Gu, W., Li, J., Li, Z. and Wu, G. (2019) “A Data-Driven scheduling approach for hydrogen penetrated energy system using LSTM network,” Sustainability, 11(23), p. 6784.

[J17]Zhou, S., Hu, Z., Zhong, Z., He, D. and Jiang, M. (2019) “An integrated energy system operating scenarios generator based on generative adversarial network,” Sustainability, 11(23), p. 6699.

[J16]Zhou, S., Zhao, Y., Gu, W., Wu, Z., Li, Y., Qian, Z. and Ji, Y. (2019) “Robust energy management in active distribution systems considering temporal and spatial correlation,” IEEE Access, 7, pp. 153635–153649.

[J15] Gu, W., Lu, S., Yao, S., Zhuang, W., Pan, G., Zhou, S. and Wu, Z. (2019). “Hybrid time-scale operation optimization of integrated energy system.” Electric Power Automation Equipment, 39(8), pp. 203-213.

[J14] Qiu, H., Gu, W., Wu, Z., Zhou, S., Pan, G., Yang, X. and Ding, X. (2019) “Resilience‐directional robust power dispatching of microgrids under meteorological disasters,” IET Renewable Power Generation, 13(12), pp. 2084–2093.

[J13]Zhou, S., He, D., Gu, W., Abbas, G., Hong, Q. and Booth, C. (2019) “Design and evaluation of operational scheduling approaches for HCNG Penetrated Integrated Energy System,” IEEE Access, 7, pp. 87792–87807.

[J12] Pan, G., Gu, W., Zhou, S., Qiu, H. and Lu, Y. (2020) “Synchronously decentralized Adaptive Robust Planning method for Multi-Stakeholder Integrated energy systems,” IEEE Transactions on Sustainable Energy, 11(3), pp. 1128–1139.

[J11] Qiu, H., Gu, W., Xu, Y., Wu, Z., Zhou, S. and Pan, G. (2020) “Robustly Multi-Microgrid scheduling: Stakeholder-Parallelizing distributed optimization,” IEEE Transactions on Sustainable Energy, 11(2), pp. 988–1001.

[J10] Luo, L., Gu, W., Wu, Z., and Zhou, S. (2019) “Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation,” Applied Energy, 242, pp. 1274–1284.

[J9]Zhou, S., Hu, Z., Gu, W., Jiang, M., and Zhang, X. P. (2019) “Artificial intelligence based smart energy community management: A reinforcement learning approach,” CSEE Journal of Power and Energy Systems, 5(1), pp. 1–10.

     (2019-2024近五年论文)

3)中文论文

[1]邱玥,周苏洋*,顾伟,潘光胜,陈晓刚.“碳达峰、碳中和”目标下混氢天然气技术应用前景分析[J].中国电机工程学报,2022,42(04):1301-1321.

[2]郑思雨,周苏洋*,邱玥,楼冠男,顾伟,张小平.基于改进三阶段数据包络分析法的省域全要素能效评价方法[J].中国电机工程学报,2023

[3]刘海权,周苏洋*顾伟,朱红,胡子健,陈清泉.基于网络故障链接矩阵的电网关键节点辨识及分区方法[J].中国电机工程学报,2024



科研及获奖:

主持国家自然科学基金青年项目1项(优秀结题)、国家自然科学基金面上项目1项,以东南大学负责人身份主持国家自然科学基金中英联合基金项目1项,主持江苏省双创博士人才项目1项、企业横向项目数十项。

以第一完成人身份,获得以下奖项。

[1] 2023年度中国电工技术学会科学技术奖,二等奖,区域综合能源系统动态仿真及运行调控关键技术及应用,排1

[2] 2022年度江苏省科技进步奖,三等奖,乡镇园区多能供给关键技术、成套装备及应用,排1

[3] 2024年度中国发明协会创新奖,二等奖,电--热耦合能源系统多主体协同规划技术与应用,排1

以主要完成人身份获第47届、49届日内瓦国际发明展”金奖各1;获中国电力创新奖一等奖、中国能源研究会二等奖等多个奖项。


教学:

本科生课程:逻辑与数字电路

研究生课程:综合能源系统

以指导教师身份获2019年度江苏省本科优秀毕业设计论文(一等奖)、2022年度江苏省本科优秀毕业设计论文(三等奖)、2020年度江苏省高校团队优秀毕业设计奖,主持江苏省“锦绣江苏”暑期国际学校项目1项。




人才培养:

       目前,科研团队博士研究生4,硕士研究生13人。

近五年,团队成员获国家奖学金6人次,已毕业研究生在东南大学、南京师范大学、南京供电公司(3人)、无锡供电公司、宁波供电公司、国网(苏州)能源院、徐州供电公司、宿迁供电公司、阿里、百度、美团、新浪均有任职。